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PASSING FROM MECHANICS OF THE SPECIAL THEORY OF RELATIVITY 
TO NEWTONIAN MECHANICS, AND THE RELATIVISTIC EFFECTS* 

L.T. CHERNYI 

A general method of passing from mechanics of the special theory of relativity to 
Newtonian mechanics is considered together with various relativistic effects. 

1. The basic variational equation. Let xk be the observer's coordinate system in 
a Minkowski space and gij(xk) be components of the metric tensor of that system. Below, the 
Latin and Greek indices assume, respectively, the values 1, 2, 3, 4, and 1, 2, 3. In the 

system of coordinates xk which corresponds to the observer's inertial synchronous reference 
system (inertial reference systems are assumed in what follows to bealscsynchronous) we have 

where c is the speed of light in vacuum, t is the observer's time, and the quantities ha8 
are generally dependent on space coordinates a? which in the special theory of relativitycan 
always be chosen so that throughout the space we have h,B = 1 when a = B and haa = 0 when 
a# p. (In the general theory of relativity this can be achieved locally along any specified 
curve. Respective coordinate systems are called Fermi coordinates). 

The definition of motion of a continuous medium is linked with the introduction, besides 
the observer's system of coordinates xk, of the system of coordinates 5' accompanying the 
medium. The latter individualize with j = 1,2,3 infinitely small particles of the medium, 
and are called Lagrangian coordinates. The quantity E4 is a parameter of pointsonworldlines 
of the medium along which p= const. The relation between coordinate xk and Ej is definedby 
the law of motion of the medium 

Z = xk (5’) (1.2) 

The four-dimensional velocity uof the medium is defined by the unit vector tangent to 
the medium world lines. In the observer's coordinates its components are 

(1.3) 

Cl.9 = [gij (dX*)Ev (dXj)p]“* = (C" -Us)“’ (dt):, SE C dT 

va = (d.+/dt)Ev, v= = h,p=v@, v, = h,pB 

where ds is an element of the medium world line, d7 is the increment of the proper time, 
and Vo: are components of three-dimensional velocity in the observer's inertial reference 
system. 

The design of continuous medium models is always associated with the acceptanceofcertain 
postulates. It is most rational to start from the basic variational equation /l-33/ 

6$\ AdV,+8W*+BW=O (1.4) 

dV, zv’j--gd4x= Jf- gAd’E = dVt ds, -AdV_$=dE 

g=lgij\, g^=jg;I, dJx=dxl...dti, d45=d$l...@’ 

where his the Lagrangian of the continuous medium, 6W* is a specified functional that takes 
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into account irreversible processes and external actions, 6W is a functional determined by 
Eq.(1.4) and representing a surface integral over the boundary of region V, intheMinkowski 

space and, also, possibly over the two sides of strong discontinuity surfaces inside V,, 
dVt is the three-dimensional volume of an individual infinitely small particle of continuous 
medium, defined in the accompanying coordinate system, and dE is the internal energy of the 
particle of volume dVt. Variations in Eq.(1.4) are taken with Ef = coast. Quantities related 
to the accompanying coordinate system are denoted by the symbol A. 

Models of continuous media are fixed by the selection of the Laqranqianandthefunctional 
6W*. For example, setting 

li=-pc'-~u(S,y~,y~*~,K~) 
(1.5) 

8W* = + ( (pT6S - Q&T+) dV4, Qiui = $ 
VI 

k azk 
xi =~vP=P 

where all parameters KG are known nonvaried functions of Laqranqian coordinates ta,we obtain 
the model of a perfectly elastic body in which, by definition, the processes are reversible. 
The introduced arguments of the Laqranqian and of functional 6W* have the following physical 
meaning: p is the density of the mass of body at rest, S is the specific entropy ofthemedium, 
Tis the absolute temperature, Qi are density components of the 4-force, dQcaj is the density 

of external heat volume influx to the medium during time dr = dslc (for more complex modelsof 
media the quantity Q# may also include the external influx of energy other than heat), g& 
ur are components of the metric tensor and of 4-velocity medium in the accompanying coordin- 
ate system, and 2. are components of the space metric tensor, which satisfy the relations 

U’yij = Ujyij = 0, yhj* = via* = 0, y$ = y; = 0 (1.6) 

and determine in the accompanying coordinate system the length dl of infinitelysmallsegments 
of the continuous medium that correspond to infinitely small increments of Laqranqian coordin- 
ates clP 

dl'=y&@l@=y/j l&C@ 

p" is the density of the medium mass at rest in the "initial state", ~'4 are components of 
the space metric tensor in the initial state which satisfy the relations 

Uiyijo= U'y,jo= 0, y;: = y: = 0, Q zzz y;f = o (1.7) 

and determine dl" in the initial state 

dl"a= $$ a=& = $; dEi& (1.8) 

The quantities p”, $9 are by definition known nonvaried functions of E",i.e. belong to 
parameters of the Kg type. Quantities denoted by an asterisk relate to the reference system 
that is proper for the considered point EaW of the medium at the instant of time t,. The 
so-called observer's inertial reference system for which v*v(g*", t*) = 0, hence 
6,'. 

u*1 (5*", t*) = 
(In the Minkowski space some proper coordinate system corresponds to eachproperreference 

system). 
The medium density 

relativistic continuity 
p defined by the fifth equality in parentheses in (1.5) satisfiesthe 
equation 

ViPU' = 0 

Formulas (1.6) and (1.7) imply that under the transformation 

E'" = 5'" (@), E'4 = 5'4 (EB, 54) (1.9) 

of the accompanying system of coordinates F, the quantities ~$6, $$, behave as covariant com- 
ponents of three-dimensional tensors, for instance 

Similar relations hold for y$, and 
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Because of this the ratio ye/y A and density p are invariant to transformations (1.9) of 
the accompanying coordinate system. Since the Lagrangian is by definition a four-dimensional 
scalar, hence function Uin the expression for Ain (1.5) must also be invariant to transform- 
ations (1.9). It follows from this that for an isotropic body, 
function Ucan depend on components &, $j^ 

for which all iYB^ are scalars, 
only in terms of such of their combinations that 

are themselves invariant to transformations (1.9). It can be shown using formulas (1.6) and 
(1.7) that the number of such independent combinations is three. For example, they can be 
represented by the scalars 

A A The four-dimensional components yOAi' = y"Aili do not affect invariants I,', since &fa = eai = 
0. Moreover it is possible to assume for definiteness that in the fixed accompanying system 
of coordinates ~"""4 = y0A4i = 0. The quantities yOAafi under transformations (1.9) of the ac- 
companying system of coordinates c behave as contravariant components of the three-dimen- 
sional tensor 

Y 
‘,,‘aO_ at’s at’” at's at'0 

at’ ap 
y”AO = - _ f"bv 

dCb dkv 

2. Euler's equations and conditions at discontinuities. We select functions 
xi(sj), S (EJ) as the independent determining parameters. On the basis of the above definitions 
of quantities JY$,$,P, K$,dlr, and of the theory of variations developed in /3/ we have 

sy; = -yyP:&&q5k"Vk'6sr, sp=pyijv&' (2.1) 

6 dV1 = (V&x") dVd, 6y;f = 0, 6Kg = 0 
829 = Ei%2, giq S aplaxi 

As the result of variations in Eq.(1.4) with allowance for formulas (2.1) we obtain the 
relation 

S [(V'Tij-Q(2,) SX”+p(T-~)8S- V'( T,j8X')] dV,+SW=O 
v. 

(2.2) 

From this, owing to the arbitrariness of variations 6xi, 6s and the definition of func- 
tional 6W, we obtain Euler's equations and the expression for the functional 6W 

VjT,, = Qiv $= T, 6W =+ 1 TijSxin.‘nj ,jZ: 

@V.f~* 

(2.3) 

where C, are the two sides of the three-dimensional discontinuity surface inside region Vq, 

dZ is an element of the three-dimensional volume of surface c3VI + Z,, n'are components of the 
4-vector of the external normal to that surface. By defining functional 6W for 6x"= 0 at 
the boundary aV, we can obtain conditions at the surface of strong discontinuity. Forinstance, 
in the absence of external actions we have 6W = 0, hence for variations 61 that are continu- 
ous at the discontinuity from (2.3) for the functional 6W we obtain 

(T,j)+ n’ = (T,j)_ .j, .j E n+j = - n_’ 

In (2.3) the first equation is the equation of energy-momentum of an ideal gas, T,, are 
components of the complete energy-momentum tensor and pij are components of the four-dimens- 
ional tensor of internal stresses. Equations (2.3) retain their form also in the accompanying 
coordinate system, except that the symbol A must be added to all tensor components. 
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The definition (2.2) of quantities pfi,pij implies that 

p:8=2p-$Y&&r pi::=p.G=O. utpil, = 0 
v 

(2.4) 

The substitution of expression (1.3) in the last of equalities (2.4) yields for uR 

VP UB lJ%B 
Paa=--,PatJ~ PM=-~P4B=~PaB (2.5) 

In the observer's inertial reference system the first of Eqs.(2.3), with expression (2.2) 
for components Til taken into account, assumes the form 

+- + IP(C' + U) Uk% - Pk41 - v,a,, [6’ (c’ + u) ukuo - pkBl= Qk (2.6) 

where Vpb, is the contravariant component in the three-dimensional space with componentsofthe 
metric tensor ha,. Substituting expressions (1.3) for uk into Eq.(2.6) and expression (2.5) 

for Pkil? for the equations of momenta and the equation of energy, with k = a and k=4,we 
obtain 

&[p(cs+U+- ca - v= PC&]+ V~~)[~(c’+U)~-~pag]=k,gQ~ 

+a+ u,& -~a,%]+ V~h)[~(c~+U)~-~cr~~~]=cQ, 

where in conformity with(2.2) and (2.4) 

P.,=P&$=Pq$ (J$),, p$=2p=y&& 
a$l 

Let us also write the continuity equation in the three-dimensional form 

(2.7) 

a P --+va~=o at (c” - v2)‘l~ 

If at a given instant of time the observer's reference system for an 
particle of a continuous medium is its proper one, Eqs.(2.8) and (2.7) are 
ified: 

-$ + pV&,,u"=O 

where 

(2.8) 

infinitely small 
substantially simpl- 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

Ta6* = - paSf, T,,* = T,,* = 0, Ta4* = p (9 + U) 

The problem of establishing the laws of motion in arbitrarily specified observer's refer- 
ence systems on the basis of known lawsinthe proper reference system is a problemofthetheory 
of navigation. The passage from a proper reference system in which at the considered 

gil* = 

point 
gijto an arbitrary inertial reference system is achieved with the use of the Lorentz 

transformation. As the result, the relativistic equations of continuity and motion can be 
represented in any arbitrary observer's reference system in the form 

Vj (pdija*') = 0, Vj(bi%j’T&) = bikQk* 
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where di are components of the matrix of transformation that links the bases aj and @i* of 
the observer's and of the indicated proper coordinate systems, respectively, as follows: 

3i* =dijaj 

and bik are components of matrix inverse of .I dii]/. When the bases ai*, 8j are orthonormalized 
and their space vectors ea*,ag are identically oriented in a three-dimensional physical space, 
components diJ are of the form indicated in /4/. 

3. Passing to Newtonian mechanics. Equations (2.9)-- (2.11) differ from equations 
of the model of an ideal elastic body in Newtonian mechanics written in a proper reference 
system only by the terms with coefficients c-2 . 
dust), 

If U = 0 (this equality holds, e.g., for 
then pag = 0 and the indicated terms are absent. In such case equationsofrelativistic 

and Newtonian mechanics in the proper reference system are the same, but in arbitraryinertial 
reference systems they differ, since the first are the result of navigational recalculation 
using the Lorentz transform , while the second are obtained as the solutionofthenavigational 
problem using the Galilean transform (see the footnote on p. 734 in the preceding paper 
L.I. Tkachev). Equations of relativistic and Newtonian mechanics expressedinarbitrary in- 
ertial reference systems prove to be invariant to the Lorentz or Galilean transforms. If 
Uf.0, Eqs.(2.9)- (2.11) with terms with coefficients c-* can also be considered in 

Newtonian mechanics as laws expressed in the proper reference system, which define the motion 
of some ideally elastic body with complicated properties. In that case the respective lawsof 
motion in an arbitrary inertial reference system are obtained by solving the navigational 
problem using the Galilean transformation. As the result we have the following equationsthat 
are invariant to Galilean transformations: 

@(h,/dt i ~~h~~p~~~z~ = 0 

I’CU + + $ k’(h)~da@ - P(h)@) $ = $~P<h)a@ + f&m 

f(h) & ($ t- &hl) + $ (P(h)u(h)kt@ - ~Wad@ $- = vrh) (P(h)a@+) -t q + &h)aua 

where 

P(h) = pa 
y” 
h”’ 

U(h) = u lv;B=h~; i?ch)a = ka* j!$ Qw 

When deriving Eq.(3.3) 
and (2.10). 

If the observer's 

from (2.111 it is necessary to take into account also formulas 

system of coordinates xi coincides with the proper system x*~, then on 
the basis of equality (2.1) we obtain 

(3.1) 

(3.2) 

(3.3) 

(2.9) 

and, consequently, Eqs.(3.1)- (3.3) in the proper reference system are the same as Eqs.(2.9)- 
(2.11). 

Equations (3.1)- (3.3) obviously can be used in Newtonian mechanics for defining the mo- 
tion of a continuous medium when the condition 

where x0, to are characteristic values of distance and time, is satisfied by theusedobserver's 
reference system. In this case the Lorentz transform with the terms 6s' neglected reducesto 
the Galilean transform and, consequently, Eqs. (3.11- (3.3) differ from the relativistic 
equations (2.8) and (2.7) by the terms 6~2. The presence in Eqs.(3.2) and (3.3) of termswith 
coefficients c-' means that for a complete passage to equations of the model of an ideally 
elastic body of Newtonian mechanics, the kinematic condition that r,*<t is insufficient, and 
that constraints of dynamic nature which ensure the smallness of the indicated terms are also 
required. When only condition sz<l is satisfied the allowance in Eqs.(3.2) and (3.3) for 
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terms with coefficients c-* may prove significant also in Newtonian mechanics, which produces 
a model of an ideal elastic body with complicated properties owing to internal, i.e. present 
in the proper reference system, relativistic effects. 

Equations (3.2) and (3.3) can also be obtained from the variational equation (1.4) writ- 
ten in three-dimensional form (in an inertial synchronous reference system) 

where variation 6 is carried out at constant Ea and i. 
when U,,,=O or c= oo,then 

pap = f%h& 

and consequently 

when passing to an arbitrarily specified inertial or, generally, deformable reference 
system for acceleration a%, defined in an inertial reference system, it is necessary to use 
the general formula obtained in /5/ 

where ~~~),a~~) are, respectively, the relative velocity and acceleration in the noninertial re- 
ference system, and vft), a(t) are, respectively, the transfer velocity and acceleration of the 
considered point of that system. 

Equations (3.2) and (3.3) are not of divergent form even in the absenceofexternalforces 
and heat influx I&,), = dQ@) = 0), and for ea<i they differ from the divergent equations (2.7) 
by the terms <ea. This is explained by the use of Galilean transform for passing from the 
exact equations (2.10) and (2.11) expressed in the proper reference system to an arbitrary 
observer's reference system. It may be considered as an indication that the Galilean trans- 
form does not exactly reflect the properties of the physical space-time. 

The reasoning used above for the model of a perfectly elastic body can be extended to 
any arbitrary models, since the physical laws formulated in proper reference systems reflect 
the internal processes intrinsic to particles of continuous medium. These laws areindependent 
of the arbitrary selection of the observer's reference system, and can be considered in the 
special theory of relativity (STR), as well as in Newtonian mechanics. To obtain respective 
laws in arbitrarily specified observer's reference systems it is sufficient to solve the navi- 
gational problem using specific physical space-time concepts. Thus in STR the Lorentz trans- 
form is to be used, while in Newtonian mechanics it is the Galilean transform that has to be 
used /6/. 

The various macroscopic effects of STR that vanish when c= m may divided in two types. 
To the first belong relativistic effects observable in the proper reference system in which a 
given point of continuous medium at the considered instant of proper time is at rest. Such 
effects are absent in the case of dust. To the second type belong the additional relativistic 
effects appearing in STK and are due to passing from the proper reference system at each point 
of the medium to the observer's reference system that is the same for all points. These are 
the effects of navigational transformation. Effects of the first type, as in a numberofcases 
also quantum effects (e.g., the phenomenon of ferromagnetism) manifest themselves by their 
dependence on the determining parameters of the Lagrangian and of functional 6W* in the proper 
reference systems and can be defined within the scope of Newtonian mechanics. Equations of 
Newtonian mechanics which take into account only proper relativistic effects in locally 
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determined proper reference systems coincide with the equations of relativistic mechanics 
when these are expressed in proper reference systems. 

The respective global equations of Newtonian mechanics are obtained from equations ex- 
pressed in proper reference systems after navigational transformation to the observer'sglobal 
inertial reference system using the Galilean transform, while for obtaining the equation of 
relativistic mechanics that take into account all relativisitic effects it is necessary to 
apply the Lorentz transform. The equations of Newtonian mechanics derivedintheabovemanner 
differ from the usual relativistic equations for the corresponding models of continuous media 
by terms proportional to c-~. The order of these additonal terms can generally be different 
and depends on the order of acceleration and of other quantities of thermodynamic nature (form- 
ulas (3.2) and (3.3)). 

The author thanks L.I. Sedov for guidance, constant interest in this work, and remarks. 
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